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Abstract

The BioMoby project was initiated in 2001 from within the model organism database
community. It aimed to standardize methodologies to facilitate information exchange
and access to analytical resources, using a consensus driven approach. Six years later,
the BioMoby development community is pleased to announce the release of the 1.0
version of the interoperability framework, registry API, and supporting Perl and Java
code-bases. Together, these provide interoperable access to over 1200 bioinformatics
resources worldwide through the BioMoby platform, and this number continues to grow.
Here we highlight and discuss the features of BioMoby that make it distinct from other
Semantic Web Service and interoperability initiatives, and that have been instrumental to
its deployment and use by a wide community of bioinformatics service providers. The
standard, client software, and supporting code libraries are all freely available at
http://www.biomoby.org/.

Introduction

Discovery of, and easy access to, biological data and bioinformatics software is the
critical bottleneck for systems biologists, resulting in missed scientific opportunities and
lost productivity due to expensive and unsustainable efforts in data warehousing, or the
design of ad hoc and transient Web-based analytical workflows. Workflow-design itself
is neither trivial nor reliable for most systems biology researchers since, often, a high
level of prior-knowledge and understanding of available Web-based resources is required
from the biologist. Indeed, in his article “Creating a Bioinformatics Nation” [1], Lincoln
Stein suggests that it is the lack of interoperable standards that has hindered the
integration of scientific datasets worldwide. Conversely, in her keynote address to the
EGEE °06 conference, Carole Goble purposely misquoted Michael Ashburner[2] when
she stated “Scientists would rather share their toothbrush than their data!” These
statements highlight the two somewhat opposing requirements that must be considered
when designing interoperable systems for the bioinformatics domain. On one hand, the
bioinformatics service provider community is composed of individuals with a wide
variety of different expertise, thus any interoperability proposal must be limited in
complexity and must focus on comprehensibility to non-computer-scientists; on the other
hand, the functionality gained by participating in the interoperability framework must be
sufficiently compelling for individual providers to be willing to openly share data that is,
in some cases, personally precious. These considerations were key in establishing the
technologies and practices defined by the BioMoby project [3-5]. Now, with the release
of the 1.0 version of the BioMoby Application Programming Interface (API) and
supporting code-bases, it is useful to examine the successes and failures of the BioMoby
project as it explored this question.

The Web Services model is a framework for communication between computer
applications over the World Wide Web [6]. Traditionally, they expose Web-based



application interfaces in the form of a Web Services Description Language (WSDL)
document [7] describing the input(s), output(s), function, and location of a Web Service.
The limitation of traditional Web Services lies primarily in that, while the WSDL
interface definition is machine-readable, the meaning of the input and output, and the
intent of the operations that are being executed to derive that output — the “semantics” of
the service — are opaque to the machine accessing it. The barriers posed by these
limitations are further evidenced by a recent candidate specification for the semantic
markup of WSDL documents [8]. Currently, therefore, the creation of meaningful
workflows often requires manual intervention to accurately map the output of one service
into the input of the next, because automated service composition is an error-prone
computational task [9-14]. Moreover, traditional Web Services consume and produce
their data in the form of Extensible Markup Language (XML) documents [15]. Until
recently [16], there have been no attempts to standardize the schemas of these XML
documents in the bioinformatics domain, and thus software had to be specifically
developed for each Web Service, by individuals familiar with their interface. This
software was generally task-specific, and needed to be re-written for each new analysis.

Biology is increasingly an in silico science. Few biological experiments are undertaken
without first extracting data from any of a myriad of Web sites, and/or submitting the
results of low or high-throughput experiments to an online analysis tool. However, many
life scientists are not able to write computer code to automate these processes. As such,
the provision of biological and bioinformatics resources via traditional Web Services is
inappropriate, since one large and important group of end-users cannot utilize these
programmatic interfaces in an ad hoc manner.

To overcome this limitation, the BioMoby framework defines an extended set of formats
and conventions that allows the creation of “Semantic Web Services”. Semantic Web
Services have interfaces defined and/or annotated with terms grounded in ontologies. As
such, it is possible to define software capable of utilizing the knowledge in these
ontologies to support fully- or semi-automatic service discovery and workflow
composition [17]. Of the three Semantic Web Services projects in widespread use —
myGrid, caBIO, and BioMoby (reviewed, compared, and contrasted in [18,19]),
BioMoby is unique in its utilization of ontologies to define not only the biological intent
and/or semantics of the data that are passed into and out of a service, but also to define
the syntax of that data. In much the same way that the HTML standard syntax made it
possible to develop generic Web browsers, standards for Web Service representation
(data-types, data syntaxes, and interface functional annotations) such as those developed
in the BioMoby initiative are enabling the development of generic Semantic Web Service
browsers [20]. Semantically-enhanced Web Services are more interoperable, easier to
pipeline together, more semantically transparent, and will empower the citizens of the
bioinformatics nation, allowing them to share their data more intuitively [21].

Results



Stylistic conventions

Here, we represent ontological class names using Capitalized Bold, ontological class
properties using fixed-width font, and ontological class relationships using italics.

Framework Overview

This paper describes the stable version 1.0 of the MOBY specification for use by the
whole bioinformatics community; the culmination of 6 years of the specification's steady
evolution based on early adopters’ feedback. The BioMoby interoperability framework
extends and modifies the core Web Services specification by further defining:

. An end-user-extensible, ontology-based data representation syntax (Object
Ontology)

. An end-user-extensible ontology of data domains (Namespace Ontology)

. An end-user-extensible ontology of Web Service operational descriptions
(Service Ontology)

. A predictable Web Service message structure, including explicitly defined

locations and formats for provision of metadata and cross-referencing
information, as well as structured and machine-interpretable error messages

. A Web Service registry in which all service interface definitions are represented
in terms of the above ontologies, and where the registry can utilize these
ontologies to aid discovery of task-appropriate services.

These features work together to enable the development of generic software systems that
can interact with myriad diverse bioinformatics data and analytical tool providers. The
biologist using that software requires little or no knowledge of the existence of the tool,
nor of the kinds of resources it provides, nor of the specific user interface through which
it functions [20,21]. It is worth noting that, although the 3 ontologies "define" various
bioinformatics concepts, that they are world-editable and constantly evolving. As such,
they "define" concepts based on the community's consensus at any given time, but are
constantly adapting to new ideas, new resources, and new data-types as they arise in the
community.

The Namespace Ontology — “What data are we talking about?”

There is little consensus in the bioinformatics community around how to identify records.
Often, records are simply numbered, and this requires contextualization to imbue any
meaning. To assist, these numeric identifiers are sometimes prefixed, for example
G0:0003487 for a Gene Ontology (GO) term, or gi|163483 for a GenBank record;
however this is not done consistently or reliably by all resources, nor is the separator
between the prefix and the identifier consistent between different resource providers.

The Namespace Ontology (currently a simple, flat controlled vocabulary) defines all
valid data “namespaces” — the underlying source of a given data record — in the BioMoby
system. Examples include KEGG ID for KEGG records or NCBI_gi for GenBank



records. There are over 300 different BioMoby Namespaces ranging from the most
prominent public resources such as PubMed, to lesser known resources such as
DragonDB. The Namespace Ontology is, in fact, an extension of the Cross-reference
abbreviations list [22] from the Gene Ontology consortium [23]. New resources who
wish to participate in the BioMoby framework simply register the namespaces they
consume and/or generate in the Namespace Ontology, and any BioMoby service provider
can then interpret the underlying source of data passed in that Namespace.

The combination of a namespace and an id for a BioMoby Object represents a unique
identifier for a piece of data. Since not all data is identified — for example, some data
exists only transiently during the process of an analysis — use of a Namespace is not
always required in the BioMoby framework.

The Object Ontology — “How is that data represented?”

The Object Ontology’s structure was designed to resemble that of the GO, due to the
elegant simplicity of GO, and the familiarity and acceptance of it within the target
community. Like GO, the Object Ontology is an asserted subclass (“is-a”) hierarchy, and
includes two additional partite relationships (“has-a” and “has”) representing parts in
cardinality “one”, or parts in cardinality “zero or more” respectively. The root class,
Object, possesses three properties — namespace, id, and articleName - and is
designed to represent specific data identifiers from known resources in a well-defined and
predictable manner. The value of the namespace property is a member of the
Namespace Ontology, the value of the 1d property is the record-identifier within that
resource, and the value of the articleName property indicates (as a human-readable
phrase) the semantic nature of the relationship between a given class and a class that is in
a has or has-a relationship to it. Figure 1A shows a small portion of the Sequence-branch
of the BioMoby Object Ontology, revealing how these various components are used to
construct new and more complex classes.

Primitive data-types are defined as subclasses of the root Object node. At present, only 5
primitive data-types are defined in the Object Ontology: Integer, Float, String,
DateTime, and Boolean. To simplify the design of software that requires strict typing of
data (e.g. Java) these 5 classes cannot be further sub-classed, thus more specific types of
Strings, Integers, etc. can only be constructed through creating a new class that sas-a or
has an instance of the desired primitive type.

The intent of the Object Ontology is to define an extensible, machine-readable, and
hierarchical syntax for representing bioinformatics data that provides grounding for all
structures and sub-structures in that data, and further, allows automated inferences to be
made about the structure or sub-structure of an object. Instances of Object Ontology
classes are represented in XML, with the structure of the XML document being
determined by the is-a, has-a and has relationships defined for that class in the ontology.
The is-a relationship indicates that all features (has-a, has) that exist in instances of the
parent class will also exist in instances of the child class. The has-a and has relationships
indicate that instances of the designated class will be present as one or more



(respectively) child nodes in the XML representation of instances of the parent class.
When decomposed, the object instance kas or has-a primitive object members, and
container classes with biologically meaningful names. Only instances of primitive
objects are allowed to contain (parsed) character data other than identifiers, and that data
is of the indicated type (Integer, String, etc.).

Figure 1B shows sample XML serialized instances of the classes described in Figure 1A.
In this way, the Object Ontology acts as a novel type of dynamic XML schema, precisely
stating the tags and hierarchical Document Object Model (DOM) constraints of all valid
XML-serialized object instances within the BioMoby framework.

The wide variety of legacy and third-party bioinformatics data formats such as EMBL
and GenBank records, FASTA files, or MAGE-ML files are handled by defining an
appropriately named Object class (e.g. the EMBL class is used to represent EMBL
records) that inherit from the text-formatted class (Figure 2A), which has-a String that
contains the EMBL record (Figure 2B). Thus any client or server in the BioMoby
framework can receive any data-type and unambiguously determine the nature of that
data without having to parse it or use regular-expression-based clues. Importantly, the
Object Ontology does not re-define legacy or third-party data-types, it simply makes their
type explicit, thus the myriad of existing parsers and analytical tools that consume these
file formats can still be utilized.

Similarly, binary data is also passed through String objects. The base64 encoded class
is the root of all binary data classes (Figure 2A), where the binary data is base64 encoded
by the client or service provider, and then passed in the ‘content’ member (a String) of
the text-plain class (Figure 2B). Importantly, this allows us to extend existing flat-file or
binary data types at will, by simply inheriting them and/or including them in the
definitions of new objects. This allows, for example, the creation of classes representing
annotated images or movies, where the annotations are predictably and machine-readably
separate from the binary data itself. Though this is true for many existing systems (e.g.
DICOM), the important difference is that in BioMoby these new formats are end-user
definable and extensible.

The power of making the Object Ontology end-user extensible cannot be overstated. Any
BioMoby service provider can create a new Object class by simply registering its
definition in the Object Ontology in code via the Moby Central API or through a freely
available graphical “BioMoby Dashboard” application [24]. The new Object’s definition
includes a human-readable explanation of the purpose of the data-type, and a technical
description of how this data-type relates to existing data-types in the ontology. Thus,
machines receiving this novel data-type as part of a Web Service transaction need only
look-up the data-type in the Object Ontology to determine its syntax. Moreover, since all
sub-components of all data-types are themselves BioMoby Objects, generic re-usable
software is capable of parsing and/or assembling the data components of any possible
BioMoby object, including objects that did not exist when the software was created. The
ability to create generic object parsers and assemblers significantly reduces the software’s
anticipated legacy problems and update/patch-cycles.



Though it may seem reasonable to do so, there is no formal mapping between the
Namespace and Object ontologies. Data records in a particular Namespace can be
represented by a wide variety of syntaxes (Objects); which Objects would be appropriate
is not defined. Any Object may be selected to represent a given data record.

The Objects Ontology currently consists of over 300 different data syntax definitions,
including many of the common legacy flat-file formats, as well as novel objects that have
been constructed de novo by participating service providers.

The Service Ontology — “What types of things can I do with this data?”

The Service Ontology is a simple, asserted subclass (is-a) hierarchy that defines a set of
data manipulation and/or bioinformatics analysis operation types. These include classes
such as Retrieval for retrieval of records from a database, Parsing for the extraction of
information from various flat-file formats, or Conversion for data-type syntax changes.
Subclassing is used to define more precise types of service operation. For example, an
instance of a BLAST service may have service type Pairwise _Sequence Comparison
which is a sub-class of Analysis. The BioMoby Service ontology serves a purpose
similar to the Bioinformatics Task Ontology from the myGrid project [25].

BioMoby Web Services — “What resources are out there to do it?”

BioMoby services, for example a database lookup, a ClustalW alignment tool, or a
BLAST report parser, standalone and perform a single operation each. Input and output
messages follow a well-defined message format (described below). Services consume
one or more instances of an Object within this message; they execute a single operation
on that Object, described by the appropriate Service Ontology term; and finally, the
output is returned to the caller as one or more instances of another Object within the
output message. These details are registered in the BioMoby service registry, along with
the service endpoint (URL + service name) and a textual description of the service
function for the end-user. There is library support in Java, Perl and to a more limited
extent Python, to support the extraction of input data from BioMoby messages, and to
construct appropriate output messages. As such, the service provider’s primary concern
is the business logic of their service, with none to only modest additional code required.
Software designed to minimize service provider effort in setting up new services is
available for both Java (MobyServlet [26], MoSeS[27]) and Perl (MoSeS).

Importantly, service providers do not need to be concerned about the exact structure of
the incoming data, and do not need to query the ever-changing BioMoby ontologies at
regular intervals. This is because the strict inheritance rules of the Moby XML format
imply that subsumption (a.k.a. the Liskov Substitution Principle) holds. Provided that a
client program is adhering to the BioMoby specification, it is guaranteed to send only
data that is compliant with what the service provider expects, and the BioMoby API
ensures that an ontology term that is in use by any registered service cannot be modified
by a member of the public. As such, the service provider is guaranteed to receive data



that their service code can properly parse. That being said, the data passed into a service
may be significantly more complex than the service requires (i.e. may be an instance of
an inheriting class deeper in the Object Ontology); however this fact is irrelevant to the
service provider, since the serialization of Object instances ensures that the data pieces
the service provider requires are at a predictable location within the XML DOM,
regardless of the complexity of the request’s actual object instance. As such, the code for
BioMoby services remains as lightweight as the data they use, rather than as heavyweight
as the input they could receive.

Similarly, though the service provider advertises their output data-type in the Moby
Central registry, they may, if appropriate, construct and return an instance of a more
complex Object (inheriting from the advertised output data type) if they have sufficient
information to do so. As such, the service provider has the opportunity to pass as much
data as they feel would be useful back to the client. Client software can be agnostic to
this, since the returned data, by ontological definition, contains all elements it is
expecting within the DOM structure; moreover, a “smart” client could use this more
complex data-type to discover services that perform useful functions with this richer data.

Error reporting in BioMoby is primarily focused on errors relating to the parsing or
processing of the data payload. Other errors (e.g. HTTP transport errors) are outside of
the scope of the BioMoby API, and are handled by their respective protocols. Error
handling takes place at the level of the individual input and/or a sub-component of the
input, and results in the offending input element being referred to in a block of XML
within the ‘mobyContent’ element of the response message. Importantly, individual error
handling allows services processing large batches of input objects to systematically return
meaningful results for successful executions, while not being silent about unprocessed
inputs. Exception reporting includes an exception code, as defined by the Object
Management Group’s Life Sciences Analysis Engine (LSAE) specification [28] as well
as a human-readable message indicating the nature and/or cause of the exception, as
provided by the service provider.

Unlike other successful Web Service interoperability systems [29], BioMoby services are
standalone, and are not overtly designed to be inter-dependent; there is no over-arching
BioMoby standard defining what types of services can exist, what functions they must
provide, or how they will interoperate. Moreover, they are highly modular, such that a
service provider approaching BioMoby for the first time can have a simple compliant
service running within minutes. The service provider can therefore gradually migrate
their host resources, piecemeal, into the BioMoby framework over time, or re-present
their existing resources in parallel. Complex operations in BioMoby are achieved by
chaining together multiple services, or running multiple services in parallel to extract the
individual pieces of data required, and this is well-supported by existing client
applications such as Taverna [].

The BioMoby Messaging Format — “How do I interact with a resource provider?”

BioMoby messaging currently utilizes Simple Object Access Protocol (SOAP [30]);



however, with the exception of asynchronous service invocations, no SOAP-specific
features are utilized within the BioMoby system, and it is likely that other protocols such
as HTTP POST will be supported in the future.

The body of the SOAP message (Figure 3) consists of:

. An outermost XML tag “MOBY™, identifying the message as a BioMoby
formatted message.
. A child XML element “mobyContent” within which formatted service provision

information can be placed such as database version, software name and version,
etc. In addition, this element is the container for any error reporting and
exception information that the service provider wishes to pass back to the client.

. One or more “mobyData” XML elements within “mobyContent”, which
contain:

. Zero or more instances of a BioMoby Object being passed into or out of the
service.

Generally speaking, this message structure is completely transparent to both the client
and the service provider, as it is interpreted and parsed by the libraries provided in the
BioMoby code-base. A key feature of the message format is that it is symmetric: the
output of one service can be used verbatim as the input to another, simplifying service
chaining by client software.

BioMoby is capable of executing services synchronously, or asynchronously using
specifications consistent with the Web Service Resource Framework (WSRF) standard
[31]. This interaction happens in a well-defined manner, with the invocation, polling,
and retrieval functions all having predictable signatures such that generic software can be
written that supports all cases and these signatures are described in the WSDL document
that defines the service interface. Invocation of the service returns a WSRF
EndpointReference which can be passed back to the service provider to poll for various
details about the state of a long-running service. This information is provided in the form
of an LSAE Event XML Block [28]. Upon service completion, the EndpointReference
can be used to retrieve the service output, which takes the form of a normal BioMoby
output message.

The BioMoby Central Registry — “How do I find the resource provider | want?”

“Moby Central” is a registry for BioMoby-compliant Web Services. It provides a SOAP-
based API that allows addition of services to the registry, removal of services from the
registry, and searching over registered services in a variety of ways. Importantly, the
registry is aware of all three BioMoby ontologies, and can thus optionally utilize the
semantics embedded in these ontologies to enhance search success. For example,
searching for services that generate b64 encoded _GIF objects would, if semantic
searching were enabled, also discover BioMoby Services that generated the more
complex annotated b64 encoded_GIF objects through traversal of the Object Ontology
towards its leaf nodes. Similarly, and perhaps more importantly, searching for services
that consume specific, sometimes complex data-types, for example an



annotated_FASTA object, would also discover services that consumed the more
simplistic FASTA objects, or even base Object (i.e. an identifier) through traversal of the
Object Ontology towards its root. Complex or provider-specific data-types therefore do
not (necessarily) thwart automated discovery of services that can consume that data, since
the ontologies allows the registry (or the client) to infer the semantics of that data-type.
This is a safe operation since, as described earlier, a service provider who is expecting to
consume a simplistic NucleicAcidSequence object is guaranteed to find precisely the
data they expect, in precisely the location in the DOM where they expect it, if they are
presented with a more complex child data-type such as DNASequence, RNASequence, or
AnnotatedDNASequence.

Moreover, the ontologically-governed XML schema that is used to represent data in
BioMoby allows service discovery based on any sub-component of any data message.
For example, a MultipleAlignment object contains several instances of
GenericSequence, each representing one of the aligned sequences. A generic client can
reliably decompose the MultipleAlignment object and use the GenericSequence objects
in queries to Moby Central to discover services that operate on them.

To allow discovery of services that operate on primitive data, for example “add these two
numbers”, or “give me the length of this string”, it was necessary to make even primitive
data-types into formal BioMoby object classes. This is significantly different from the
W3C XML Schema where such primitives are not considered first-order XML tags, but
rather properties of an XML element. Thus, in BioMoby, when decomposing a complex
object into its sub-components, these primitives can be used for service discovery
through Moby Central in precisely the same way as more complex objects.

Summary

Through adoption of these extensions to traditional Web Services, it is possible to design
software systems that enable bench scientists and other non-programmers to automate the
discovery and connection of independent Web Services into large analytical pipelines
without any task-specific tooling, nor any deep understanding of BioMoby, Web
Services, or any of the individual BioMoby Web Service interfaces. Generic workflow
environments such as Taverna [, 32], MOWServ [33], Remora [34], Gbrowse-Moby [20],
Bluejay [35], and Seahawk [36] can (and do) suggest, and automatically connect,
appropriate Web-based resources into complex pipelines without requiring any technical
knowledge by the end-user. Rather, they rely on the expert knowledge of the biologist to
select appropriate services from the limited number of suggestions provided through
queries to the BioMoby registry based on their stated requirements. Currently, more than
40 data and/or analytical service providers worldwide are using the BioMoby
interoperability framework to provide over 1200 interoperable services, and this number
continues to grow almost daily.

An example of the utility of BioMoby for the biologist

The semi-fictitious story below describes one example of the type of day-to-day data



exploration activities undertaken by biologists. The difficulty they experience in
pursuing these activities, due to the large amounts of data and the disparity between
resource interfaces, provided the motivation for BioMoby’s invention and development.
The workflow described below does, in fact, exist and is currently being prepared for
publication elsewhere.

“Dr. Davies is an Antirrhinum (Snapdragon) researcher. He is
studying a new class of mutations but has so far been unable to clone
any of the loci. Moreover, he is constantly frustrated by the lack of a
complete Antirrhinum genome sequence, though there are a large
number of mapped mutations and ESTs. The taxonomically closest
sequenced model organism is Arabidopsis, however there are no
explicit links between the Arabidopsis data in The Arabidopsis
Information Resource (TAIR), and the Snapdragon data in
DragonDB. In an attempt to bootstrap his cloning efforts, he decides
to look-up which loci from Arabidopsis have mutant phenotypes that
share characteristics with his loci of interest;, whether or not these
have been mapped, or if there may be homologous ESTs from
Snapdragon available for him to attempt a co-segregation analysis.
He knows that both TAIR (in the USA) and DragonDB (in Germany)
have provided many of their resources as BioMoby services, so he
begins. He first asks Moby Central if DragonDB provides keyword
phenotypic lookup, which it does. With a single click, he has gathered
the list of loci matching his phenotypic criteria. He then asks the
same question from TAIR, and with a single click has gathered all
matching Arabidopsis loci. BioMoby alerts him that TAIR can
provide the sequences for these loci if he wishes, and in a single click
he has retrieved all of these sequences. BioMoby then alerts him that
DragonDB is capable of executing a BLAST analysis on those
sequences, and with a single click he sends all sequences into the
BLAST service. The returning Blast reports contain a myriad of
“hits”, and he becomes concerned that he may need to do a large
number of look-ups; however BioMoby alerts him that DragonDB
provides a Blast parsing service that will extract the “hits”, and he
selects this option. From the resulting list of “hits”, he asks BioMoby
to retrieve the map locations for these sequences. In addition, he
queries if any services are capable of transforming those sequence
IDs into their associated locus IDs, and such a service is
automatically discovered and executed for him. With this list of
Antirrhinum Locus IDs resulting from the Blast search, he then
requests that it be cross-referenced with the list of Antirrhinum locus
IDs resulting from the keyword search. BioMoby suggests a set-
intersection service available from the iCAPTURE Centre in Canada,
and with a single click he has now gathered the list of loci that share
both phenotypic and sequence similarity. BioMoby suggests that he
might also wish to retrieve photographs of the associated mutants,



and with a single click he has retrieved these images. From this
complex but filtered set of data, gathered within just a few minutes, he
begins a biological assessment of whether any of his genes of interest
have been mapped and/or sequenced.”

Discussion

BioMoby has made several key decisions which distinguish it from other prominent Web
Service interoperability frameworks in the bioinformatics domain, and result in the
interoperable behaviors observed when using it in practice. Some of these decisions are
part of the BioMoby specification, while others have simply arisen as a community-
consensus on best practices for Web Service provision.

Closed world

The first distinguishing feature of BioMoby is that it operates in an extensible, but
closed-world of data semantics. The XML Schema within a traditional WSDL document
defines valid XML tags for any given service, but these are not (predictably) bound to
any standard external machine-readable interpretation. Thus the XML tags, and the
content of these tags, from one Web Service are not reliably compatible with the XML
tags or content from another arbitrarily chosen Web Service. As a result, automated
pipelining of non-coordinated services in other interoperability initiatives is extremely
difficult. In contrast, the Object, Namespace, and Service Ontologies provide a common
binding for all services and client software in the BioMoby framework such that a given
XML tag appearing in any BioMoby message has one and only one interpretation, and
this interpretation is available in the shared ontologies. In this way, BioMoby finesses
the extremely complex problem of open-world Web Service composition by defining the
allowable world of data syntax and semantics via publicly extensible ontologies.

Nevertheless, it can equally be argued that operating in a closed world is artificial,
unsustainable, and overly-limiting. In constraining itself to its three boutique ontologies,
BioMoby does not natively take advantage of the wealth of knowledge captured in third-
party ontologies such as those provided by the Open Biological Ontologies (OBO) [37]
consortium. Indeed, a partner project that has branched-off from the original BioMoby
project is the Simple Semantic Web Architecture and Protocol (SSWAP [38]). SSWAP
proposes to use an open world of data semantics, relying on third-party ontologies to
define the nature and syntax of the inputs and outputs of Web resources, and defining
only a minimal messaging structure within the project itself. SSWAP has shown exciting
early success in achieving interoperability between a small number of participating
providers. It remains to be seen, however, if the complexity of reasoning over an open-
world system, and/or the potential dilution of compatibility between resources due to the
increasing number of ontological possibilities, will interfere with the desired goal of
straight-forward, maximal interoperability between bioinformatics Web resources.
Nevertheless, it seems plausible and, given the experience of the BioMoby project even
likely, that the open world approach of SSWAP will not suffer from these problems



because of the nature of their target community. The bioinformatics nation is populated
by individuals who have critical problems to solve, so while the open-world semantics of
SSWAP does not constrain the behaviours of its users, the user community themselves
will likely “close the world” voluntarily in order to maximize interoperability as quickly
as possible. The experience of BioMoby has been that the bioinformatics community
wants and needs interoperability, and will give-up a certain amount of freedom if this
goal can be achieved.

Modularity

The second distinguishing feature is that BioMoby services tend to be extremely
lightweight, highly modular, and execute very fine-grained operations on incoming data.
This was not a behaviour mandated within the project specification; however it has
become a convention among the majority of BioMoby service providers. This may be
because it is more straight-forward and/or is more advantageous to do so (e.g. promoting
service re-use, rather than cloning common functionality code in many services), but it is
also at least in part due to constraints relating to the simplistic ontologies.

Data-types defined in the Object Ontology tend to be quite straightforward, seldom
merging more than two or three related data elements into any given Object. Contrast
this with other commonly used Web Service systems such as the NCBI e-Ultilities [39].
Input of a gene identifier, for example [40], to the e-Fetch Web Service returns an XML
document containing a single record of 250kb that includes 120 distinct XML tags
ranging from organism and taxonomy information to detailed gene structure, cross-
references, and even PubMed identifiers and GO terms. While this is efficient and likely
useful for software applications that have been designed specifically to utilize e-fetch
data, the nonspecific “give me everything” operation that happens within e-Fetch Web
Services is difficult to semantically describe. The net effects are 1) making it hard to
discover the service through a more specific Web Service lookup, and 2) the returned
document will often be more extensive than a client needed, overwhelming the user.
Moreover, an e-Fetch-specific parser must be included in all software applications that
might access this service due to the complexity of the output message and the lack of
semantic grounding available in XML Schema. The extreme modularity of BioMoby
services reduces message size in many cases, reduces computational load, simplifies
service description, enables the creation of generic parsers, and yet allows retrieval of
arbitrarily complex data-sets through a “Lego block™ approach of combining operations
of high granularity.

Semantic transparency

In addition to simplifying service code and the description of a service operation, the
modularity of services has another more important consequence in simplifying service
discovery. An operation performed by a given BioMoby service should be
unambiguously described by a single term from the Service Ontology (e.g. Parsing).
The BioMoby restriction of allowing only one Service Ontology term to be applied to the
description of a Service operation encourages service providers to make these services



highly granular. With this level of granularity, the semantics of a service become nearly
transparent, making automated discovery of appropriate or desired services easier and
more accurate.

In practice, however, the Service Ontology is hopelessly insufficient to adequately
describe even the simple services that are built within the BioMoby framework. Its
restriction to a single ontology term in the service description, leads to a combinatorial
explosion of terms as service providers register new terms in an attempt to adequately
describe what operations are performed on which inputs using which resources. Despite
encouraging functional modularity, a Web Service can seldom be described in a single
word or phrase, and thus many service providers put the semantics of their service
functionality into the human readable service name and description. This severely limits
the ability to guide users precisely during interactive workflow building and is an
impenetrable barrier to automated service pipeline composition. Nevertheless, despite
being the most apparent weaknesses of the BioMoby system, this limitation has not, in
practice, proven to be an insurmountable barrier to human-aided service discovery or
interoperability. The users of BioMoby (bioinformaticians and biologists) seem
comfortable choosing an analytical strategy from the limited set of sensible possibilities
presented to them through registry queries, rather than having the choice made for them
or hidden from them by some fully-automated system.

There is also additional semantic transparency in the BioMoby approach to error-
reporting. Whereas conventional web based tools, when not returning any result, often
leave the user wondering if this is due to a temporary server malfunction, a genuine
empty result, or a malformed query, BioMoby's implementation of error-handling helps
to discriminate between these different underlying causes, and facilitates the development
of automated work-arounds to resolve various types of problems. Moreover, because
error-reporting is predictable and well-annotated, this is being used (to a limited extent)
to automatically curate the BioMoby registry, where non-responsive services and/or
services that respond inappropriately can be filtered out of search results. This filtering
reduces the level of frustration experienced by the biologist when their analyses fail for
unknown reasons.

Extensibility

The fact that the closed-world of BioMoby ontologies is end-user extensible was critical
to its adoption by a community that embraces open-world behaviors. Recent peer
projects have attempted to create interoperable bioinformatics systems by defining the
acceptable set of XML Schemas that must be used by all service providers, thus closing
the world at the schema level. Though it is too early to say if this will be successful, it
seems likely that the centralized declaration of acceptable data structures, even if
eventually extensible through a curatorial process, will be an impediment to widespread
adoption of such systems. While BioMoby encourages consensus on data models, it does
not dictate them; end-users are allowed to construct, register, and use alternative data
models as they see fit (though they limit their interoperability with other resources by
doing so). Importantly, the end-user extensibility of the BioMoby ontologies takes



advantage of the “mass collaborative” behaviour that is increasingly making its mark on
Web-based resources, particularly in the domain of “tagging”.

Giving end-users the ability to define their own data-types, service types, and namespaces
was considered a risky approach in the early days of the project, particularly since
ontology-development has historically been undertaken by a curation team of domain
experts [41]. However, in the past five years, the Object ontology has only required
significant curation twice to reconcile two near-identical branches, and this happened by
the community of service providers communicating with each other (largely via the
BioMoby mailing list) and modifying their respective services, then deleting the
deprecated ontology nodes once they were no longer in use. No planned curation has
been done on either the Namespace or Service ontologies. As such, the BioMoby
ontologies, while imperfect, have required no centralized investment of time or money,
and are largely self-curating through an open and public API. The open model takes
advantage of the “passive altruism” of a collaborative community of providers acting on
their shared desire to enhance interoperability for their own individual purposes.

BioMoby vs. peer semantic and schema technologies

The development of BioMoby was influenced significantly by the growth in popularity of
Web Services, WSDL, and XML Schema in 2001/2002, and made many adaptations to
these standards in response to perceived limitations and/or complexities in these systems
that hindered their maximal utility within the bioinformatics community. Moreover, the
BioMoby initiative developed independently of, and largely uninfluenced by, the
emergent Semantic Web activity that was taking place within the World Wide Web
Consortium (W3C) between 2001 and 2004. Thus, it is interesting to compare the
semantic aspects of the various peer technologies, and examine where the benefits and/or
limitations of each approach might lie.

BioMoby vs. W3C XML Schema

The W3C XML Schema specification describes the structure of an XML document, but
not its intent or its semantics. In this sense, as described in Table 1, XML Schema are
class-like, but are not grounded in a semantic definition of what that class “means”, and
thus are semantically opaque to software applications. Other limitations of XML Schema
are that, while XML Schema are modular in that it is possible to refer to an external or
third-party XML Schema fragment from within an XML Schema document, XML
Schema are not natively extensible (i.e. inheritance is not part of the XML Schema
specification), and one must use non-standard extensions of XML Schema [42] to
describe the semantic relationship between embedded schema fragments. Projects such
as HOBIT [] are attempting to add more semantics into XML Schema by providing a
universal grounding for a curated set of XML Schema such that both the intent and the
syntax are shared by all consumers and providers. Unfortunately, this is occurring
through manual curation, and is limited only to the “outer-most” element of the XML
Schema; embedded schema fragments, while representing real-world identifiable data-
types, are not included in this semantic annotation, and thus cannot be utilized in a



generic way to construct novel inputs to downstream Web Services.

BioMoby achieves a similar syntax specification in its Object Ontology; however,
BioMoby classes are grounded in an open and shared ontology and relationships between
embedded classes are indicated by the ar t i cl eNane property. Moreover, the schema
defined by BioMoby is natively extensible through an open and shared ontology API.
Thus many of the limitations, in particular lack of heritability and the semantic opacity of
XML Schema-based data definitions, are overcome within the BioMoby data typing
framework.

BioMoby vs. OWL/RDF

In early 2004, the World Wide Web Consortium (W3C) formally announced the two core
Semantic Web technologies: Web Ontology Language (OWL [43]) and Resource
Description Framework (RDF [44]). OWL is an abstract language for defining classes
and their properties. OWL ontologies fall into a variety of “species”, called OWL-Lite,
OWL-DL, and OWL-Full. OWL-Lite and OWL-DL are “decidable”, meaning
(simplistically) that a Description Logic (DL) reasoner (FaCT++ [45], RACER [46],
Pellet [47]) can computationally infer both the internal consistency of the ontology as
well as computationally classify instance data to be members of a particular OWL
class(es) in a finite amount of time. RDF is an abstract language for describing resources
as subject-predicate-object graphs. Resources described in RDF can be grounded as
instances of an OWL class definition either by direct assertion or by computationally
inferred DL-based classification. OWL ontologies can be represented in RDF, and RDF
has a defined serialization into XML (called RDF-XML) which is among the most
common representation formats for both OWL and RDF on the Semantic Web.

Although the early releases of BioMoby preceded the W3C’s formal announcement of
OWL/RDF by several years, BioMoby nevertheless exhibits many of the behaviors that
are expected from the emergent Semantic Web, such as automated discovery of
appropriate resources, interoperability between them, and the ability to automatically
compose and decompose data types in novel and meaningful combinations. In fact, the
BioMoby framework resembles the OWL/RDF duo of Semantic Web technologies in
several key respects, and these are detailed in Table 1.

The “semantics” of ontologically-based systems arise in three ways. The first is through
the human-readable definition of the class, which can be used as grounding for all
software that utilizes that ontology. In this aspect, OWL, BioMoby, and many of the
other ontologies in the bioinformatics domain (e.g. most of the OBO ontologies) are
identical in that all three allow for human-readable class definitions. The second way of
adding semantic meaning into an ontology is through asserting subclass (is-a)
relationships. Again, OWL, BioMoby, and most other bioinformatics ontologies share
this level of complexity. The final level of semantics comes from the explicit elaboration
of the properties that define a given class. While many of the most commonly used
bioinformatics ontologies do not take this final step of semantics, BioMoby does;
however to maintain simplicity and robustness within the Web Service use-case, property



definitions in BioMoby are managed differently than those in OWL/RDF, which leads to
both positive outcomes as well as limitations.

At the syntactic/structural level, the relationship between the class definitions in the
Object Ontology and XML instances of those Objects is strikingly similar to the
relationship between a class defined in an OWL ontology, and the RDF-XML instance of
that class respectively. Superficially a class in OWL precisely describes the sub-graph of
properties that exists (or is asserted to exist) within an instance of that class; while an
Object class in BioMoby precisely defines a sub-DOM that will exist within an XML
serialized instance of that class.

Similarly, the properties of an OWL class may be other OWL classes, just as the relations
in a BioMoby Object are other BioMoby Objects. BioMoby is currently somewhat
stricter than OWL, in that the related Objects contained within the main Object instance
are strictly limited to being of the type declared in the Object Ontology, and cannot be of
a child type (subclass); however this aspect of the API is being revisited and an update
will be released shortly that allows inheritance among contained object-types. When this
is enabled, the BioMoby articleName will fulfill a role much like the OWL/RDF

predicate, indicating the semantic relation between two object instances.

Looking more deeply, however, there are some significant differences between the
BioMoby and the OWL/RDF approach to classes and instances. OWL/RDF allows the
assertion of class membership for any given individual, regardless of its properties. As
such, any given instance of an OWL class may or may not carry all or any of the
properties defined for that class. In cases where the properties do not exist, the open-
world reasoning of OWL allows software systems to “assume” that the properties exist,
despite the fact that they cannot be examined. Conversely, instances in BioMoby are
much more rigorous, and are required to carry all components (i.e. the sas-a and has
relationships) that are defined by the ontology. This additional robustness ensures that
applications can reliably extract property values from instance data when passing these
instances between Web Services. In this respect, BioMoby data is more reliable and
predictable than RDF/OWL data for the Web Service use-case, and we would contend
that a similar constraint/convention will need to be adopted by any Semantic Web
Service project that intends to use the RDF/OWL suite of technologies.

While the two observations above describe what can be determined about the properties
of an instance by its class membership, more interesting perhaps is what can be
computationally inferred about the class membership of an instance based on its
properties. OWL allows arbitrary definition of properties, and these are semantically
rich. In a well-defined OWL ontology, regardless of the asserted class definition, human-
readable definition, or asserted sub-class relationship, two classes that share the same set
of defining properties will be inferred to be identical by a DL reasoner; moreover, an
instance whose properties fulfill that class definition will be inferred as a member of that
OWL class, regardless of the class into which that instance was asserted. In BioMoby,
there are only two non-subclass properties — has-a and has — and these are semantically-
impoverished, intended to represent only the structure of the instance and its various sub-



components, not the semantic relationship between these sub-components. The
semantics of these relationships is captured only in a human-readable form — in the
arti cl eName — and no attempt has yet been made to constrain or to explicitly define
or to re-use these ar t i ¢l eNames. Though it would not be impossible to design a
BioMoby reasoner that utilized the semantics in the article name, this would not bring
any benefit in practice, since the informality of the process so far has resulted in few
articleNames ever being re-used even when referring to the same encapsulated sub-
object. Moreover, the same articleName is often re-used in different circumstances
and to embed different Object types into one another. Thus, discovery of equivalent
Objects in BioMoby is limited strictly to the asserted subclass hierarchy and cannot be
determined by examination of the properties of two objects. This limitation is described
in further detail in Figure 3. Nevertheless, as has been shown in many other
bioinformatics ontologies, asserted is-a hierarchies are extremely powerful and can solve
a large proportion of the most common data representation problems.

The comparison above seems to reveal several interesting points about what the Semantic
Web is now, where it may go in the future, and where the power of the semantic
approach lies in the realm of Web Services. In BioMoby, individuals (people) agree on
(a) the meaning/intent of a particular class/concept, and (b) the syntax by which that
shared concept will be represented. Therein the system achieves its semantic behaviours.
There is very little machine-interpretation of the semantics of BioMoby messages, and it
seems that for an important subset of existing bioinformatics problems, machine
interpretation is simply not required. So long as all service providers output a FASTA
file in a FASTA Object, another service provider can safely interpret that an incoming
FASTA Object contains a FASTA file, and ensure that their software parses it as such.
In essence, the semantics of BioMoby resides in the brains of the service providers
themselves. BioMoby thus behaves much like a human language, where the spelling of
words and structure of a sentence is sufficient to communicate between two individuals
since the meaning of those words and structures is commonly held between them.

Conclusion

BioMoby has been running with open, public participation for approximately five years,
and its continued adoption by new bioinformatics resources worldwide is testament to its
simplicity and successful use by third-party providers. We believe the experiences of the
BioMoby development community offer significant insight into successful approaches to
Web Services interoperability platforms and best-practices in service provision on the
emergent Semantic Web. As Web Services and Semantic Web Services increasingly
become the architecture for bioinformatics, we believe that BioMoby and BioMoby-like
frameworks will have a significant role to play in this future.

Materials and Methods

The BioMoby ontologies are available as RDF/OWL documents and/or can be queried
through the BioMoby Central API. The Moby Central API is implemented as a Perl



SOAP service, and the ontologies and service information is stored and fetched from a
mySQL database. Support libraries for clients and service providers are available in Perl,
Java, and to a limited extent in Python. All code is available under the Perl Artistic
License, via the BioMoby project homepage.
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<moby:MOBY xmlns:moby="http://biomoby.org” xmlns="http://biomoby.org”>
<moby:mobyContent>
<ProvisionInformation>
<serviceSoftware software name="" software version="" software comment=""/>
<serviceDatabase database name="" database version="" database comment=""/>
<serviceComment>comment here</servicecComment>
</ProvisionInformation>
<moby:mobyData queryID="Q1”>
<moby:Simple>
<moby:Object namespace="X" id="1"/>
</moby:Simple>
</moby:mobyData>
<moby:mobyData queryID="Q2">
<moby:Simple>
<moby:Object namespace="X" id="2"/>
</moby:Simple>
</moby:mobyData>
</moby:mobyContent>
</moby:MOBY>
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Figure Legends

Figure 1: Sequential construction of complex objects in the BioMoby Objects Ontology,
and the corresponding XML serialization of their instances. (A) The creation of
BioMoby Object Classes starting from the root object “Object” (a), to a VirtualSequence
(b) which inherits from Object and has-a Integer (Length), to a GenericSequence (c)
which inherits from VirtualSequence, and adds a String (SequenceString) through the
has-a relationship, and finally a DNASequence (d) which simply inherits from and thus
further specializes the GenericSequence Object semantically. (B) The serialization of the
objects (a,b,c,d) from above. The outermost XML tag is the ontological class name.
Child tags are added by the has or has-a relationships (b), or are inherited from parent
classes (c). Specialization of an existing class (d) simply changes the outermost tag
name.

Figure 2: Support for legacy flat-file formats and binaries in BioMoby Objects. (A) The
text-plain Object class (a) is the root of all Object classes that support both legacy flat-file
formats and binary data-types. From this, the text-formatted and base64-encoded
classes are derived (b). text-formatted is the root of all flat-file formats, while all binaries
are inherited as children of the base64-encoded class (¢). (B) The XML serialization of
the EMBL class (a) representing EMBL flat-file records, and a GIF image in the form of
a b64 encoded GIF object (c).

Figure 3: The structure of a BioMoby service invocation and response message. The
XML structure here is contained within the SOAP Body of the surrounding SOAP
message. The tags, from outermost to innermost, are MOBY, mobyContent, and
mobyData. An example of service provision information is also shown inside of the
mobyContent block of XML.

Figure 4: A demonstration of the problems associated with the BioMoby asserted Object
hierarchy and lack of articleName semantics. The two (hypothetical) objects

Molecular Weight and Hydrophobicity are defined as containing a float representing the
molecular weight and a string representing a hydrophobicity profile respectively (1) and
two subclasses are also defined as inheriting from Molecular Weight and having
Hydrophobicity, or inheriting from Hydrophobicity and having Molecular Weight. An
instance of Hydrophobicity and of Molecular Weight, in the same namespace and with
the same id, has been returned from two independent service calls (2a, 2b). Though
cognitively it seems plausible that these two objects could be combined into one of the
two subclasses (e.g. 2¢ or 2d) in practice this cannot be done reliably in an automated
manner because there is no way to automatically interpret the intent of the articleName
“wt” or the articleName “hydro”. Moreover, because the intent of the container
relationships are opaque to the system, it is not possible to infer that 2c and 2d are, in
fact, identical in their information content and should be able to be utilized by any service
that consumes both Molecular Weight and Hydrophobicity; rather a service would have
to register itself as consuming one Object class or the other. In practice, these kinds of
problems are resolved by service providers reaching a consensus with one another, and



choosing to consume or produce only one of the two options, and removing the other
option from the ontology.



Tables

Table 1: Comparison of the features of the BioMoby Object Ontology versus that of an OWL
ontology and their respective instances. A comparison with XML Schema is also included to show
the gains achieved by moving towards ontologically-based data structures.

Feature OWL/RDF | BioMoby W3C XML
Objects Schema
Declared Classes Yes Yes Sort of
Classes have class properties Yes Yes Sort of
Classes have literal properties Yes Yes Sort of
Extensible Class definitions Yes Yes Sort of
Heritable Class definitions Yes Yes No
Reasoning over instances based on Yes Yes No
asserted ontological subclasses
Reasoning over instances based on Yes No No
instance properties
Instances must carry properties (vs. No Yes Sort of
being inferred to carry properties)




