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Abstract

The BioMoby project was initiated in 2001 from within the model organism database 
community.  It aimed to standardize methodologies to facilitate information exchange 
and access to analytical resources, using a consensus driven approach.  Six years later, 
the BioMoby development community is pleased to announce the release of the 1.0 
version of the interoperability framework, registry API, and supporting Perl and Java 
code-bases.  Together, these provide interoperable access to over 1200 bioinformatics 
resources worldwide through the BioMoby platform, and this number continues to grow. 
Here we highlight and discuss the features of BioMoby that make it distinct from other 
Semantic Web Service and interoperability initiatives, and that have been instrumental to 
its deployment and use by a wide community of bioinformatics service providers.  The 
standard, client software, and supporting code libraries are all freely available at 
http://www.biomoby.org/.

Introduction

Discovery of, and easy access to, biological data and bioinformatics software is the 
critical bottleneck for systems biologists, resulting in missed scientific opportunities and 
lost productivity due to expensive and unsustainable efforts in data warehousing, or the 
design of ad hoc and transient Web-based analytical workflows.  Workflow-design itself 
is neither trivial nor reliable for most systems biology researchers since, often, a high 
level of prior-knowledge and understanding of available Web-based resources is required 
from the biologist.  Indeed, in his article “Creating a Bioinformatics Nation” [1], Lincoln 
Stein suggests that it is the lack of interoperable standards that has hindered the 
integration of scientific datasets worldwide.  Conversely, in her keynote address to the 
EGEE ‘06 conference, Carole Goble purposely misquoted Michael Ashburner [2] when 
she stated “Scientists would rather share their toothbrush than their data!”  These 
statements highlight the two somewhat opposing requirements that must be considered 
when designing interoperable systems for the bioinformatics domain.  On one hand, the 
bioinformatics service provider community is composed of individuals with a wide 
variety of different expertise, thus any interoperability proposal must be limited in 
complexity and must focus on comprehensibility to non-computer-scientists; on the other 
hand, the functionality gained by participating in the interoperability framework must be 
sufficiently compelling for individual providers to be willing to openly share data that is, 
in some cases, personally precious.  These considerations were key in establishing the 
technologies and practices defined by the BioMoby project [3-5].  Now, with the release 
of the 1.0 version of the BioMoby Application Programming Interface (API) and 
supporting code-bases, it is useful to examine the successes and failures of the BioMoby 
project as it explored this question.

The Web Services model is a framework for communication between computer 
applications over the World Wide Web [6].  Traditionally, they expose Web-based 



application interfaces in the form of a Web Services Description Language (WSDL) 
document [7] describing the input(s), output(s), function, and location of a Web Service. 
The limitation of traditional Web Services lies primarily in that, while the WSDL 
interface definition is machine-readable, the meaning of the input and output, and the 
intent of the operations that are being executed to derive that output – the “semantics” of 
the service – are opaque to the machine accessing it.  The barriers posed by these 
limitations are further evidenced by a recent candidate specification for the semantic 
markup of WSDL documents [8].  Currently, therefore, the creation of meaningful 
workflows often requires manual intervention to accurately map the output of one service 
into the input of the next, because automated service composition is an error-prone 
computational task [9-14].  Moreover, traditional Web Services consume and produce 
their data in the form of Extensible Markup Language (XML) documents [15].  Until 
recently [16], there have been no attempts to standardize the schemas of these XML 
documents in the bioinformatics domain, and thus software had to be specifically 
developed for each Web Service, by individuals familiar with their interface.  This 
software was generally task-specific, and needed to be re-written for each new analysis.

Biology is increasingly an in silico science.  Few biological experiments are undertaken 
without first extracting data from any of a myriad of Web sites, and/or submitting the 
results of low or high-throughput experiments to an online analysis tool.  However, many 
life scientists are not able to write computer code to automate these processes.  As such, 
the provision of biological and bioinformatics resources via traditional Web Services is 
inappropriate, since one large and important group of end-users cannot utilize these 
programmatic interfaces in an ad hoc manner.  

To overcome this limitation, the BioMoby framework defines an extended set of formats 
and conventions that allows the creation of “Semantic Web Services”.  Semantic Web 
Services have interfaces defined and/or annotated with terms grounded in ontologies.  As 
such, it is possible to define software capable of utilizing the knowledge in these 
ontologies to support fully- or semi-automatic service discovery and workflow 
composition [17].  Of the three Semantic Web Services projects in widespread use – 
myGrid, caBIO, and BioMoby (reviewed, compared, and contrasted in [18,19]), 
BioMoby is unique in its utilization of ontologies to define not only the biological intent 
and/or semantics of the data that are passed into and out of a service, but also to define 
the syntax of that data.  In much the same way that the HTML standard syntax made it 
possible to develop generic Web browsers, standards for Web Service representation 
(data-types, data syntaxes, and interface functional annotations) such as those developed 
in the BioMoby initiative are enabling the development of generic Semantic Web Service 
browsers [20].  Semantically-enhanced Web Services are more interoperable, easier to 
pipeline together, more semantically transparent, and will empower the citizens of the 
bioinformatics nation, allowing them to share their data more intuitively [21].

Results



Stylistic conventions

Here, we represent ontological class names using Capitalized Bold, ontological class 
properties using fixed-width font, and ontological class relationships using italics.

Framework Overview

This paper describes the stable version 1.0 of the MOBY specification for use by the 
whole bioinformatics community; the culmination of 6 years of the specification's steady 
evolution based on early adopters’ feedback.  The BioMoby interoperability framework 
extends and modifies the core Web Services specification by further defining:
• An end-user-extensible, ontology-based data representation syntax (Object 

Ontology)
• An end-user-extensible ontology of data domains (Namespace Ontology)
• An end-user-extensible ontology of Web Service operational descriptions 

(Service Ontology)
• A predictable Web Service message structure, including explicitly defined 

locations and formats for provision of metadata and cross-referencing 
information, as well as structured and machine-interpretable error messages

• A Web Service registry in which all service interface definitions are represented 
in terms of the above ontologies, and where the registry can utilize these 
ontologies to aid discovery of task-appropriate services.

These features work together to enable the development of generic software systems that 
can interact with myriad diverse bioinformatics data and analytical tool providers. The 
biologist using that software requires little or no knowledge of the existence of the tool, 
nor of the kinds of resources it provides, nor of the specific user interface through which 
it functions [20,21].  It is worth noting that, although the 3 ontologies "define" various 
bioinformatics concepts, that they are world-editable and constantly evolving.  As such, 
they "define" concepts based on the community's consensus at any given time, but are 
constantly adapting to new ideas, new resources, and new data-types as they arise in the 
community.

The Namespace Ontology – “What data are we talking about?”

There is little consensus in the bioinformatics community around how to identify records. 
Often, records are simply numbered, and this requires contextualization to imbue any 
meaning.  To assist, these numeric identifiers are sometimes prefixed, for example 
GO:0003487 for a Gene Ontology (GO) term, or gi|163483 for a GenBank record; 
however this is not done consistently or reliably by all resources, nor is the separator 
between the prefix and the identifier consistent between different resource providers.

The Namespace Ontology (currently a simple, flat controlled vocabulary) defines all 
valid data “namespaces” – the underlying source of a given data record – in the BioMoby 
system.  Examples include KEGG_ID for KEGG records or NCBI_gi for GenBank 



records.  There are over 300 different BioMoby Namespaces ranging from the most 
prominent public resources such as PubMed, to lesser known resources such as 
DragonDB.  The Namespace Ontology is, in fact, an extension of the Cross-reference 
abbreviations list [22] from the Gene Ontology consortium [23].  New resources who 
wish to participate in the BioMoby framework simply register the namespaces they 
consume and/or generate in the Namespace Ontology, and any BioMoby service provider 
can then interpret the underlying source of data passed in that Namespace.  

The combination of a namespace and an id for a BioMoby Object represents a unique 
identifier for a piece of data. Since not all data is identified – for example, some data 
exists only transiently during the process of an analysis – use of a Namespace is not 
always required in the BioMoby framework.

The Object Ontology – “How is that data represented?”

The Object Ontology’s structure was designed to resemble that of the GO, due to the 
elegant simplicity of GO, and the familiarity and acceptance of it within the target 
community.  Like GO, the Object Ontology is an asserted subclass (“is-a”) hierarchy, and 
includes two additional partite relationships (“has-a” and “has”) representing parts in 
cardinality “one”, or parts in cardinality “zero or more” respectively.  The root class, 
Object, possesses three properties – namespace, id, and articleName – and is 
designed to represent specific data identifiers from known resources in a well-defined and 
predictable manner.  The value of the namespace property is a member of the 
Namespace Ontology, the value of the id property is the record-identifier within that 
resource, and the value of the articleName property indicates (as a human-readable 
phrase) the semantic nature of the relationship between a given class and a class that is in 
a has or has-a relationship to it.  Figure 1A shows a small portion of the Sequence-branch 
of the BioMoby Object Ontology, revealing how these various components are used to 
construct new and more complex classes.

Primitive data-types are defined as subclasses of the root Object node.  At present, only 5 
primitive data-types are defined in the Object Ontology:  Integer, Float, String, 
DateTime, and Boolean.  To simplify the design of software that requires strict typing of 
data (e.g. Java) these 5 classes cannot be further sub-classed, thus more specific types of 
Strings, Integers, etc. can only be constructed through creating a new class that has-a or 
has an instance of the desired primitive type.

The intent of the Object Ontology is to define an extensible, machine-readable, and 
hierarchical syntax for representing bioinformatics data that provides grounding for all 
structures and sub-structures in that data, and further, allows automated inferences to be 
made about the structure or sub-structure of an object.  Instances of Object Ontology 
classes are represented in XML, with the structure of the XML document being 
determined by the is-a, has-a and has relationships defined for that class in the ontology. 
The is-a relationship indicates that all features (has-a, has) that exist in instances of the 
parent class will also exist in instances of the child class.  The has-a and has relationships 
indicate that instances of the designated class will be present as one or more 



(respectively) child nodes in the XML representation of instances of the parent class. 
When decomposed, the object instance has or has-a primitive object members, and 
container classes with biologically meaningful names.  Only instances of primitive 
objects are allowed to contain (parsed) character data other than identifiers, and that data 
is of the indicated type (Integer, String, etc.).

Figure 1B shows sample XML serialized instances of the classes described in Figure 1A. 
In this way, the Object Ontology acts as a novel type of dynamic XML schema, precisely 
stating the tags and hierarchical Document Object Model (DOM) constraints of all valid 
XML-serialized object instances within the BioMoby framework.

The wide variety of legacy and third-party bioinformatics data formats such as EMBL 
and GenBank records, FASTA files, or MAGE-ML files are handled by defining an 
appropriately named Object class (e.g. the EMBL class is used to represent EMBL 
records) that inherit from the text-formatted class (Figure 2A), which has-a String that 
contains the EMBL record (Figure 2B). Thus any client or server in the BioMoby 
framework can receive any data-type and unambiguously determine the nature of that 
data without having to parse it or use regular-expression-based clues.  Importantly, the 
Object Ontology does not re-define legacy or third-party data-types, it simply makes their 
type explicit, thus the myriad of existing parsers and analytical tools that consume these 
file formats can still be utilized.

Similarly, binary data is also passed through String objects.  The base64_encoded class 
is the root of all binary data classes (Figure 2A), where the binary data is base64 encoded 
by the client or service provider, and then passed in the ‘content’ member (a String) of 
the text-plain class (Figure 2B).  Importantly, this allows us to extend existing flat-file or 
binary data types at will, by simply inheriting them and/or including them in the 
definitions of new objects.  This allows, for example, the creation of classes representing 
annotated images or movies, where the annotations are predictably and machine-readably 
separate from the binary data itself.  Though this is true for many existing systems (e.g. 
DICOM), the important difference is that in BioMoby these new formats are end-user 
definable and extensible.

The power of making the Object Ontology end-user extensible cannot be overstated.  Any 
BioMoby service provider can create a new Object class by simply registering its 
definition in the Object Ontology in code via the Moby Central API or through a freely 
available graphical “BioMoby Dashboard” application [24].  The new Object’s definition 
includes a human-readable explanation of the purpose of the data-type, and a technical 
description of how this data-type relates to existing data-types in the ontology.  Thus, 
machines receiving this novel data-type as part of a Web Service transaction need only 
look-up the data-type in the Object Ontology to determine its syntax.  Moreover, since all 
sub-components of all data-types are themselves BioMoby Objects, generic re-usable 
software is capable of parsing and/or assembling the data components of any possible 
BioMoby object, including objects that did not exist when the software was created. The 
ability to create generic object parsers and assemblers significantly reduces the software’s 
anticipated legacy problems and update/patch-cycles.



Though it may seem reasonable to do so, there is no formal mapping between the 
Namespace and Object ontologies.  Data records in a particular Namespace can be 
represented by a wide variety of syntaxes (Objects); which Objects would be appropriate 
is not defined.  Any Object may be selected to represent a given data record.  

The Objects Ontology currently consists of over 300 different data syntax definitions, 
including many of the common legacy flat-file formats, as well as novel objects that have 
been constructed de novo by participating service providers.

The Service Ontology – “What types of things can I do with this data?”

The Service Ontology is a simple, asserted subclass (is-a) hierarchy that defines a set of 
data manipulation and/or bioinformatics analysis operation types.  These include classes 
such as Retrieval for retrieval of records from a database, Parsing for the extraction of 
information from various flat-file formats, or Conversion for data-type syntax changes. 
Subclassing is used to define more precise types of service operation.  For example, an 
instance of a BLAST service may have service type Pairwise_Sequence_Comparison 
which is a sub-class of Analysis.  The BioMoby Service ontology serves a purpose 
similar to the Bioinformatics Task Ontology from the myGrid project [25].

BioMoby Web Services – “What resources are out there to do it?”

BioMoby services, for example a database lookup, a ClustalW alignment tool, or a 
BLAST report parser, standalone and perform a single operation each.  Input and output 
messages follow a well-defined message format (described below).  Services consume 
one or more instances of an Object within this message; they execute a single operation 
on that Object, described by the appropriate Service Ontology term; and finally, the 
output is returned to the caller as one or more instances of another Object within the 
output message.  These details are registered in the BioMoby service registry, along with 
the service endpoint (URL + service name) and a textual description of the service 
function for the end-user.  There is library support in Java, Perl and to a more limited 
extent Python, to support the extraction of input data from BioMoby messages, and to 
construct appropriate output messages.  As such, the service provider’s primary concern 
is the business logic of their service, with none to only modest additional code required. 
Software designed to minimize service provider effort in setting up new services is 
available for both Java (MobyServlet [26], MoSeS[27]) and Perl (MoSeS).

Importantly, service providers do not need to be concerned about the exact structure of 
the incoming data, and do not need to query the ever-changing BioMoby ontologies at 
regular intervals.  This is because the strict inheritance rules of the Moby XML format 
imply that subsumption (a.k.a. the Liskov Substitution Principle) holds.  Provided that a 
client program is adhering to the BioMoby specification, it is guaranteed to send only 
data that is compliant with what the service provider expects, and the BioMoby API 
ensures that an ontology term that is in use by any registered service cannot be modified 
by a member of the public.  As such, the service provider is guaranteed to receive data 



that their service code can properly parse.  That being said, the data passed into a service 
may be significantly more complex than the service requires (i.e. may be an instance of 
an inheriting class deeper in the Object Ontology); however this fact is irrelevant to the 
service provider, since the serialization of Object instances ensures that the data pieces 
the service provider requires are at a predictable location within the XML DOM, 
regardless of the complexity of the request’s actual object instance.  As such, the code for 
BioMoby services remains as lightweight as the data they use, rather than as heavyweight 
as the input they could receive.

Similarly, though the service provider advertises their output data-type in the Moby 
Central registry, they may, if appropriate, construct and return an instance of a more 
complex Object (inheriting from the advertised output data type) if they have sufficient 
information to do so.  As such, the service provider has the opportunity to pass as much 
data as they feel would be useful back to the client.  Client software can be agnostic to 
this, since the returned data, by ontological definition, contains all elements it is 
expecting within the DOM structure; moreover, a “smart” client could use this more 
complex data-type to discover services that perform useful functions with this richer data.

Error reporting in BioMoby is primarily focused on errors relating to the parsing or 
processing of the data payload.  Other errors (e.g. HTTP transport errors) are outside of 
the scope of the BioMoby API, and are handled by their respective protocols.  Error 
handling takes place at the level of the individual input and/or a sub-component of the 
input, and results in the offending input element being referred to in a block of XML 
within the ‘mobyContent’ element of the response message.  Importantly, individual error 
handling allows services processing large batches of input objects to systematically return 
meaningful results for successful executions, while not being silent about unprocessed 
inputs.  Exception reporting includes an exception code, as defined by the Object 
Management Group’s Life Sciences Analysis Engine (LSAE) specification [28] as well 
as a human-readable message indicating the nature and/or cause of the exception, as 
provided by the service provider.

Unlike other successful Web Service interoperability systems [29], BioMoby services are 
standalone, and are not overtly designed to be inter-dependent; there is no over-arching 
BioMoby standard defining what types of services can exist, what functions they must 
provide, or how they will interoperate.  Moreover, they are highly modular, such that a 
service provider approaching BioMoby for the first time can have a simple compliant 
service running within minutes. The service provider can therefore gradually migrate 
their host resources, piecemeal, into the BioMoby framework over time, or re-present 
their existing resources in parallel.  Complex operations in BioMoby are achieved by 
chaining together multiple services, or running multiple services in parallel to extract the 
individual pieces of data required, and this is well-supported by existing client 
applications such as Taverna [].

The BioMoby Messaging Format – “How do I interact with a resource provider?”

BioMoby messaging currently utilizes Simple Object Access Protocol (SOAP [30]); 



however, with the exception of asynchronous service invocations, no SOAP-specific 
features are utilized within the BioMoby system, and it is likely that other protocols such 
as HTTP POST will be supported in the future.  

The body of the SOAP message (Figure 3) consists of: 
• An outermost XML tag “MOBY”, identifying the message as a BioMoby 

formatted message.
• A child XML element “mobyContent” within which formatted service provision 

information can be placed such as database version, software name and version, 
etc.  In addition, this element is the container for any error reporting and 
exception information that the service provider wishes to pass back to the client.

• One or more “mobyData” XML elements within “mobyContent”, which 
contain:

• Zero or more instances of a BioMoby Object being passed into or out of the 
service.

Generally speaking, this message structure is completely transparent to both the client 
and the service provider, as it is interpreted and parsed by the libraries provided in the 
BioMoby code-base. A key feature of the message format is that it is symmetric: the 
output of one service can be used verbatim as the input to another, simplifying service 
chaining by client software. 

BioMoby is capable of executing services synchronously, or asynchronously using 
specifications consistent with the Web Service Resource Framework (WSRF) standard 
[31].  This interaction happens in a well-defined manner, with the invocation, polling, 
and retrieval functions all having predictable signatures such that generic software can be 
written that supports all cases and these signatures are described in the WSDL document 
that defines the service interface.  Invocation of the service returns a WSRF 
EndpointReference which can be passed back to the service provider to poll for various 
details about the state of a long-running service.  This information is provided in the form 
of an LSAE Event XML Block [28].  Upon service completion, the EndpointReference 
can be used to retrieve the service output, which takes the form of a normal BioMoby 
output message.

The BioMoby Central Registry – “How do I find the resource provider I want?”

“Moby Central” is a registry for BioMoby-compliant Web Services.  It provides a SOAP-
based API that allows addition of services to the registry, removal of services from the 
registry, and searching over registered services in a variety of ways.  Importantly, the 
registry is aware of all three BioMoby ontologies, and can thus optionally utilize the 
semantics embedded in these ontologies to enhance search success.  For example, 
searching for services that generate b64_encoded _GIF objects would, if semantic 
searching were enabled, also discover BioMoby Services that generated the more 
complex annotated_b64_encoded_GIF objects through traversal of the Object Ontology 
towards its leaf nodes.  Similarly, and perhaps more importantly, searching for services 
that consume specific, sometimes complex data-types, for example an 



annotated_FASTA object, would also discover services that consumed the more 
simplistic FASTA objects, or even base Object (i.e. an identifier) through traversal of the 
Object Ontology towards its root.  Complex or provider-specific data-types therefore do 
not (necessarily) thwart automated discovery of services that can consume that data, since 
the ontologies allows the registry (or the client) to infer the semantics of that data-type. 
This is a safe operation since, as described earlier, a service provider who is expecting to 
consume a simplistic NucleicAcidSequence object is guaranteed to find precisely the 
data they expect, in precisely the location in the DOM where they expect it, if they are 
presented with a more complex child data-type such as DNASequence, RNASequence, or 
AnnotatedDNASequence.

Moreover, the ontologically-governed XML schema that is used to represent data in 
BioMoby allows service discovery based on any sub-component of any data message. 
For example, a MultipleAlignment object contains several instances of 
GenericSequence, each representing one of the aligned sequences.  A generic client can 
reliably decompose the MultipleAlignment object and use the GenericSequence objects 
in queries to Moby Central to discover services that operate on them.

To allow discovery of services that operate on primitive data, for example “add these two 
numbers”, or “give me the length of this string”, it was necessary to make even primitive 
data-types into formal BioMoby object classes.  This is significantly different from the 
W3C XML Schema where such primitives are not considered first-order XML tags, but 
rather properties of an XML element.  Thus, in BioMoby, when decomposing a complex 
object into its sub-components, these primitives can be used for service discovery 
through Moby Central in precisely the same way as more complex objects.

Summary

Through adoption of these extensions to traditional Web Services, it is possible to design 
software systems that enable bench scientists and other non-programmers to automate the 
discovery and connection of independent Web Services into large analytical pipelines 
without any task-specific tooling, nor any deep understanding of BioMoby, Web 
Services, or any of the individual BioMoby Web Service interfaces.  Generic workflow 
environments such as Taverna [, 32], MOWServ [33], Remora [34], Gbrowse-Moby [20], 
Bluejay [35], and Seahawk [36] can (and do) suggest, and automatically connect, 
appropriate Web-based resources into complex pipelines without requiring any technical 
knowledge by the end-user.  Rather, they rely on the expert knowledge of the biologist to 
select appropriate services from the limited number of suggestions provided through 
queries to the BioMoby registry based on their stated requirements.  Currently, more than 
40 data and/or analytical service providers worldwide are using the BioMoby 
interoperability framework to provide over 1200 interoperable services, and this number 
continues to grow almost daily.

An example of the utility of BioMoby for the biologist

The semi-fictitious story below describes one example of the type of day-to-day data 



exploration activities undertaken by biologists.  The difficulty they experience in 
pursuing these activities, due to the large amounts of data and the disparity between 
resource interfaces, provided the motivation for BioMoby’s invention and development. 
The workflow described below does, in fact, exist and is currently being prepared for 
publication elsewhere.

“Dr. Davies is an Antirrhinum (Snapdragon) researcher.  He is  
studying a new class of mutations but has so far been unable to clone 
any of the loci.  Moreover, he is constantly frustrated by the lack of a  
complete Antirrhinum genome sequence, though there are a large 
number of mapped mutations and ESTs.  The taxonomically closest  
sequenced model organism is Arabidopsis, however there are no 
explicit links between the Arabidopsis data in The Arabidopsis  
Information Resource (TAIR), and the Snapdragon data in  
DragonDB.  In an attempt to bootstrap his cloning efforts, he decides 
to look-up which loci from Arabidopsis have mutant phenotypes that  
share characteristics with his loci of interest; whether or not these 
have been mapped; or if there may be homologous ESTs from 
Snapdragon available for him to attempt a co-segregation analysis.  
He knows that both TAIR (in the USA) and DragonDB (in Germany) 
have provided many of their resources as BioMoby services, so he 
begins.  He first asks Moby Central if DragonDB provides keyword 
phenotypic lookup, which it does.  With a single click, he has gathered 
the list of loci matching his phenotypic criteria.  He then asks the 
same question from TAIR, and with a single click has gathered all  
matching Arabidopsis loci.  BioMoby alerts him that TAIR can 
provide the sequences for these loci if he wishes, and in a single click 
he has retrieved all of these sequences.  BioMoby then alerts him that  
DragonDB is capable of executing a BLAST analysis on those 
sequences, and with a single click he sends all sequences into the 
BLAST service.  The returning Blast reports contain a myriad of  
“hits”, and he becomes concerned that he may need to do a large 
number of look-ups; however BioMoby alerts him that DragonDB 
provides a Blast parsing service that will extract the “hits”, and he 
selects this option.  From the resulting list of “hits”, he asks BioMoby 
to retrieve the map locations for these sequences.  In addition, he 
queries if any services are capable of transforming those sequence 
IDs into their associated locus IDs, and such a service is  
automatically discovered and executed for him.  With this list of  
Antirrhinum Locus IDs resulting from the Blast search, he then 
requests that it be cross-referenced with the list of Antirrhinum locus 
IDs resulting from the keyword search.  BioMoby suggests a set-
intersection service  available from the iCAPTURE Centre in Canada,  
and with a single click he has now gathered the list of loci that share 
both phenotypic and sequence similarity.  BioMoby suggests that he 
might also wish to retrieve photographs of the associated mutants,  



and with a single click he has retrieved these images.  From this  
complex but filtered set of data, gathered within just a few minutes, he 
begins a biological assessment of whether any of his genes of interest  
have been mapped and/or sequenced.”

Discussion

BioMoby has made several key decisions which distinguish it from other prominent Web 
Service interoperability frameworks in the bioinformatics domain, and result in the 
interoperable behaviors observed when using it in practice.  Some of these decisions are 
part of the BioMoby specification, while others have simply arisen as a community-
consensus on best practices for Web Service provision.

Closed world

The first distinguishing feature of BioMoby is that it operates in an extensible, but 
closed-world of data semantics.  The XML Schema within a traditional WSDL document 
defines valid XML tags for any given service, but these are not (predictably) bound to 
any standard external machine-readable interpretation.  Thus the XML tags, and the 
content of these tags, from one Web Service are not reliably compatible with the XML 
tags or content from another arbitrarily chosen Web Service.  As a result, automated 
pipelining of non-coordinated services in other interoperability initiatives is extremely 
difficult.  In contrast, the Object, Namespace, and Service Ontologies provide a common 
binding for all services and client software in the BioMoby framework such that a given 
XML tag appearing in any BioMoby message has one and only one interpretation, and 
this interpretation is available in the shared ontologies.  In this way, BioMoby finesses 
the extremely complex problem of open-world Web Service composition by defining the 
allowable world of data syntax and semantics via publicly extensible ontologies.

Nevertheless, it can equally be argued that operating in a closed world is artificial, 
unsustainable, and overly-limiting.  In constraining itself to its three boutique ontologies, 
BioMoby does not natively take advantage of the wealth of knowledge captured in third-
party ontologies such as those provided by the Open Biological Ontologies (OBO) [37] 
consortium.  Indeed, a partner project that has branched-off from the original BioMoby 
project is the Simple Semantic Web Architecture and Protocol (SSWAP [38]).  SSWAP 
proposes to use an open world of data semantics, relying on third-party ontologies to 
define the nature and syntax of the inputs and outputs of Web resources, and defining 
only a minimal messaging structure within the project itself.  SSWAP has shown exciting 
early success in achieving interoperability between a small number of participating 
providers.  It remains to be seen, however, if the complexity of reasoning over an open-
world system, and/or the potential dilution of compatibility between resources due to the 
increasing number of ontological possibilities, will interfere with the desired goal of 
straight-forward, maximal interoperability between bioinformatics Web resources. 
Nevertheless, it seems plausible and, given the experience of the BioMoby project even 
likely, that the open world approach of SSWAP will not suffer from these problems 



because of the nature of their target community.  The bioinformatics nation is populated 
by individuals who have critical problems to solve, so while the open-world semantics of 
SSWAP does not constrain the behaviours of its users, the user community themselves 
will likely “close the world” voluntarily in order to maximize interoperability as quickly 
as possible.  The experience of BioMoby has been that the bioinformatics community 
wants and needs interoperability, and will give-up a certain amount of freedom if this 
goal can be achieved.

Modularity

The second distinguishing feature is that BioMoby services tend to be extremely 
lightweight, highly modular, and execute very fine-grained operations on incoming data. 
This was not a behaviour mandated within the project specification; however it has 
become a convention among the majority of BioMoby service providers. This may be 
because it is more straight-forward and/or is more advantageous to do so (e.g. promoting 
service re-use, rather than cloning common functionality code in many services), but it is 
also at least in part due to constraints relating to the simplistic ontologies.

Data-types defined in the Object Ontology tend to be quite straightforward, seldom 
merging more than two or three related data elements into any given Object.  Contrast 
this with other commonly used Web Service systems such as the NCBI e-Utilities [39]. 
Input of a gene identifier, for example [40], to the e-Fetch Web Service returns an XML 
document containing a single record of 250kb that includes 120 distinct XML tags 
ranging from organism and taxonomy information to detailed gene structure, cross-
references, and even PubMed identifiers and GO terms.  While this is efficient and likely 
useful for software applications that have been designed specifically to utilize e-fetch 
data, the nonspecific “give me everything” operation that happens within e-Fetch Web 
Services is difficult to semantically describe.  The net effects are 1) making it hard to 
discover the service through a more specific Web Service lookup, and 2) the returned 
document will often be more extensive than a client needed, overwhelming the user. 
Moreover, an e-Fetch-specific parser must be included in all software applications that 
might access this service due to the complexity of the output message and the lack of 
semantic grounding available in XML Schema.  The extreme modularity of BioMoby 
services reduces message size in many cases, reduces computational load, simplifies 
service description, enables the creation of generic parsers, and yet allows retrieval of 
arbitrarily complex data-sets through a “Lego block” approach of combining operations 
of high granularity.

Semantic transparency

In addition to simplifying service code and the description of a service operation, the 
modularity of services has another more important consequence in simplifying service 
discovery.  An operation performed by a given BioMoby service should be 
unambiguously described by a single term from the Service Ontology (e.g. Parsing). 
The BioMoby restriction of allowing only one Service Ontology term to be applied to the 
description of a Service operation encourages service providers to make these services 



highly granular.  With this level of granularity, the semantics of a service become nearly 
transparent, making automated discovery of appropriate or desired services easier and 
more accurate.

In practice, however, the Service Ontology is hopelessly insufficient to adequately 
describe even the simple services that are built within the BioMoby framework.  Its 
restriction to a single ontology term in the service description, leads to a combinatorial 
explosion of terms as service providers register new terms in an attempt to adequately 
describe what operations are performed on which inputs using which resources.  Despite 
encouraging functional modularity, a Web Service can seldom be described in a single 
word or phrase, and thus many service providers put the semantics of their service 
functionality into the human readable service name and description.  This severely limits 
the ability to guide users precisely during interactive workflow building and is an 
impenetrable barrier to automated service pipeline composition.  Nevertheless, despite 
being the most apparent weaknesses of the BioMoby system, this limitation has not, in 
practice, proven to be an insurmountable barrier to human-aided service discovery or 
interoperability. The users of BioMoby (bioinformaticians and biologists) seem 
comfortable choosing an analytical strategy from the limited set of sensible possibilities 
presented to them through registry queries, rather than having the choice made for them 
or hidden from them by some fully-automated system.

There is also additional semantic transparency in the BioMoby approach to error-
reporting.  Whereas conventional web based tools, when not returning any result, often 
leave the user wondering if this is due to a temporary server malfunction, a genuine 
empty result, or a malformed query, BioMoby's implementation of error-handling helps 
to discriminate between these different underlying causes, and facilitates the development 
of automated work-arounds to resolve various types of problems.  Moreover, because 
error-reporting is predictable and well-annotated, this is being used (to a limited extent) 
to automatically curate the BioMoby registry, where non-responsive services and/or 
services that respond inappropriately can be filtered out of search results. This filtering 
reduces the level of frustration experienced by the biologist when their analyses fail for 
unknown reasons.

Extensibility

The fact that the closed-world of BioMoby ontologies is end-user extensible was critical 
to its adoption by a community that embraces open-world behaviors.  Recent peer 
projects have attempted to create interoperable bioinformatics systems by defining the 
acceptable set of XML Schemas that must be used by all service providers, thus closing 
the world at the schema level.  Though it is too early to say if this will be successful, it 
seems likely that the centralized declaration of acceptable data structures, even if 
eventually extensible through a curatorial process, will be an impediment to widespread 
adoption of such systems.  While BioMoby encourages consensus on data models, it does 
not dictate them; end-users are allowed to construct, register, and use alternative data 
models as they see fit (though they limit their interoperability with other resources by 
doing so).  Importantly, the end-user extensibility of the BioMoby ontologies takes 



advantage of the “mass collaborative” behaviour that is increasingly making its mark on 
Web-based resources, particularly in the domain of “tagging”.  

Giving end-users the ability to define their own data-types, service types, and namespaces 
was considered a risky approach in the early days of the project, particularly since 
ontology-development has historically been undertaken by a curation team of domain 
experts [41].  However, in the past five years, the Object ontology has only required 
significant curation twice to reconcile two near-identical branches, and this happened by 
the community of service providers communicating with each other (largely via the 
BioMoby mailing list) and modifying their respective services, then deleting the 
deprecated ontology nodes once they were no longer in use.  No planned curation has 
been done on either the Namespace or Service ontologies.  As such, the BioMoby 
ontologies, while imperfect, have required no centralized investment of time or money, 
and are largely self-curating through an open and public API.  The open model takes 
advantage of the “passive altruism” of a collaborative community of providers acting on 
their shared desire to enhance interoperability for their own individual purposes.

BioMoby vs. peer semantic and schema technologies

The development of BioMoby was influenced significantly by the growth in popularity of 
Web Services, WSDL, and XML Schema in 2001/2002, and made many adaptations to 
these standards in response to perceived limitations and/or complexities in these systems 
that hindered their maximal utility within the bioinformatics community.  Moreover, the 
BioMoby initiative developed independently of, and largely uninfluenced by, the 
emergent Semantic Web activity that was taking place within the World Wide Web 
Consortium (W3C) between 2001 and 2004.  Thus, it is interesting to compare the 
semantic aspects of the various peer technologies, and examine where the benefits and/or 
limitations of each approach might lie.

BioMoby vs. W3C XML Schema

The W3C XML Schema specification describes the structure of an XML document, but 
not its intent or its semantics.  In this sense, as described in Table 1, XML Schema are 
class-like, but are not grounded in a semantic definition of what that class “means”, and 
thus are semantically opaque to software applications.  Other limitations of XML Schema 
are that, while XML Schema are modular in that it is possible to refer to an external or 
third-party XML Schema fragment from within an XML Schema document, XML 
Schema are not natively extensible (i.e. inheritance is not part of the XML Schema 
specification), and one must use non-standard extensions of XML Schema [42] to 
describe the semantic relationship between embedded schema fragments.  Projects such 
as HOBIT [] are attempting to add more semantics into XML Schema by providing a 
universal grounding for a curated set of XML Schema such that both the intent and the 
syntax are shared by all consumers and providers.  Unfortunately, this is occurring 
through manual curation, and is limited only to the “outer-most” element of the XML 
Schema; embedded schema fragments, while representing real-world identifiable data-
types, are not included in this semantic annotation, and thus cannot be utilized in a 



generic way to construct novel inputs to downstream Web Services.

BioMoby achieves a similar syntax specification in its Object Ontology; however, 
BioMoby classes are grounded in an open and shared ontology and relationships between 
embedded classes are indicated by the articleName property.  Moreover, the schema 
defined by BioMoby is natively extensible through an open and shared ontology API. 
Thus many of the limitations, in particular lack of heritability and the semantic opacity of 
XML Schema-based data definitions, are overcome within the BioMoby data typing 
framework.

BioMoby vs. OWL/RDF

In early 2004, the World Wide Web Consortium (W3C) formally announced the two core 
Semantic Web technologies: Web Ontology Language (OWL [43]) and Resource 
Description Framework (RDF [44]).  OWL is an abstract language for defining classes 
and their properties.  OWL ontologies fall into a variety of “species”, called OWL-Lite, 
OWL-DL, and OWL-Full.  OWL-Lite and OWL-DL are “decidable”, meaning 
(simplistically) that a Description Logic (DL) reasoner (FaCT++ [45], RACER [46], 
Pellet [47]) can computationally infer both the internal consistency of the ontology as 
well as computationally classify instance data to be members of a particular OWL 
class(es) in a finite amount of time.  RDF is an abstract language for describing resources 
as subject-predicate-object graphs.  Resources described in RDF can be grounded as 
instances of an OWL class definition either by direct assertion or by computationally 
inferred DL-based classification.  OWL ontologies can be represented in RDF, and RDF 
has a defined serialization into XML (called RDF-XML) which is among the most 
common representation formats for both OWL and RDF on the Semantic Web.

Although the early releases of BioMoby preceded the W3C’s formal announcement of 
OWL/RDF by several years, BioMoby nevertheless exhibits many of the behaviors that 
are expected from the emergent Semantic Web, such as automated discovery of 
appropriate resources, interoperability between them, and the ability to automatically 
compose and decompose data types in novel and meaningful combinations.  In fact, the 
BioMoby framework resembles the OWL/RDF duo of Semantic Web technologies in 
several key respects, and these are detailed in Table 1.  

The “semantics” of ontologically-based systems arise in three ways.  The first is through 
the human-readable definition of the class, which can be used as grounding for all 
software that utilizes that ontology.  In this aspect, OWL, BioMoby, and many of the 
other ontologies in the bioinformatics domain (e.g. most of the OBO ontologies) are 
identical in that all three allow for human-readable class definitions.  The second way of 
adding semantic meaning into an ontology is through asserting subclass (is-a) 
relationships.  Again, OWL, BioMoby, and most other bioinformatics ontologies share 
this level of complexity.  The final level of semantics comes from the explicit elaboration 
of the properties that define a given class.  While many of the most commonly used 
bioinformatics ontologies do not take this final step of semantics, BioMoby does; 
however to maintain simplicity and robustness within the Web Service use-case, property 



definitions in BioMoby are managed differently than those in OWL/RDF, which leads to 
both positive outcomes as well as limitations.

At the syntactic/structural level, the relationship between the class definitions in the 
Object Ontology and XML instances of those Objects is strikingly similar to the 
relationship between a class defined in an OWL ontology, and the RDF-XML instance of 
that class respectively.  Superficially a class in OWL precisely describes the sub-graph of 
properties that exists (or is asserted to exist) within an instance of that class; while an 
Object class in BioMoby precisely defines a sub-DOM that will exist within an XML 
serialized instance of that class.  

Similarly, the properties of an OWL class may be other OWL classes, just as the relations 
in a BioMoby Object are other BioMoby Objects.  BioMoby is currently somewhat 
stricter than OWL, in that the related Objects contained within the main Object instance 
are strictly limited to being of the type declared in the Object Ontology, and cannot be of 
a child type (subclass); however this aspect of the API is being revisited and an update 
will be released shortly that allows inheritance among contained object-types.  When this 
is enabled, the BioMoby articleName will fulfill a role much like the OWL/RDF 
predicate, indicating the semantic relation between two object instances.

Looking more deeply, however, there are some significant differences between the 
BioMoby and the OWL/RDF approach to classes and instances.  OWL/RDF allows the 
assertion of class membership for any given individual, regardless of its properties.  As 
such, any given instance of an OWL class may or may not carry all or any of the 
properties defined for that class.  In cases where the properties do not exist, the open-
world reasoning of OWL allows software systems to “assume” that the properties exist, 
despite the fact that they cannot be examined.  Conversely, instances in BioMoby are 
much more rigorous, and are required to carry all components (i.e. the has-a and has 
relationships) that are defined by the ontology.  This additional robustness ensures that 
applications can reliably extract property values from instance data when passing these 
instances between Web Services.  In this respect, BioMoby data is more reliable and 
predictable than RDF/OWL data for the Web Service use-case, and we would contend 
that a similar constraint/convention will need to be adopted by any Semantic Web 
Service project that intends to use the RDF/OWL suite of technologies.

While the two observations above describe what can be determined about the properties 
of an instance by its class membership, more interesting perhaps is what can be 
computationally inferred about the class membership of an instance based on its 
properties.  OWL allows arbitrary definition of properties, and these are semantically 
rich.  In a well-defined OWL ontology, regardless of the asserted class definition, human-
readable definition, or asserted sub-class relationship, two classes that share the same set 
of defining properties will be inferred to be identical by a DL reasoner; moreover, an 
instance whose properties fulfill that class definition will be inferred as a member of that 
OWL class, regardless of the class into which that instance was asserted.  In BioMoby, 
there are only two non-subclass properties – has-a and has – and these are semantically-
impoverished, intended to represent only the structure of the instance and its various sub-



components, not the semantic relationship between these sub-components.  The 
semantics of these relationships is captured only in a human-readable form – in the 
articleName – and no attempt has yet been made to constrain or to explicitly define 
or to re-use these articleNames.  Though it would not be impossible to design a 
BioMoby reasoner that utilized the semantics in the article name, this would not bring 
any benefit in practice, since the informality of the process so far has resulted in few 
articleNames ever being re-used even when referring to the same encapsulated sub-
object.  Moreover, the same articleName is often re-used in different circumstances 
and to embed different Object types into one another.  Thus, discovery of equivalent 
Objects in BioMoby is limited strictly to the asserted subclass hierarchy and cannot be 
determined by examination of the properties of two objects.  This limitation is described 
in further detail in Figure 3.  Nevertheless, as has been shown in many other 
bioinformatics ontologies, asserted is-a hierarchies are extremely powerful and can solve 
a large proportion of the most common data representation problems.

The comparison above seems to reveal several interesting points about what the Semantic 
Web is now, where it may go in the future, and where the power of the semantic 
approach lies in the realm of Web Services.  In BioMoby, individuals (people) agree on 
(a) the meaning/intent of a particular class/concept, and (b) the syntax by which that 
shared concept will be represented.  Therein the system achieves its semantic behaviours. 
There is very little machine-interpretation of the semantics of BioMoby messages, and it 
seems that for an important subset of existing bioinformatics problems, machine 
interpretation is simply not required.  So long as all service providers output a FASTA 
file in a FASTA Object, another service provider can safely interpret that an incoming 
FASTA Object contains a FASTA file, and ensure that their software parses it as such. 
In essence, the semantics of BioMoby resides in the brains of the service providers 
themselves.  BioMoby thus behaves much like a human language, where the spelling of 
words and structure of a sentence is sufficient to communicate between two individuals 
since the meaning of those words and structures is commonly held between them.  

Conclusion

BioMoby has been running with open, public participation for approximately five years, 
and its continued adoption by new bioinformatics resources worldwide is testament to its 
simplicity and successful use by third-party providers.  We believe the experiences of the 
BioMoby development community offer significant insight into successful approaches to 
Web Services interoperability platforms and best-practices in service provision on the 
emergent Semantic Web.  As Web Services and Semantic Web Services increasingly 
become the architecture for bioinformatics, we believe that BioMoby and BioMoby-like 
frameworks will have a significant role to play in this future. 

Materials and Methods

The BioMoby ontologies are available as RDF/OWL documents and/or can be queried 
through the BioMoby Central API.  The Moby Central API is implemented as a Perl 



SOAP service, and the ontologies and service information is stored and fetched from a 
mySQL database.  Support libraries for clients and service providers are available in Perl, 
Java, and to a limited extent in Python.  All code is available under the Perl Artistic 
License, via the BioMoby project homepage.
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Figure 3

 <moby:MOBY xmlns:moby=”http://biomoby.org”  xmlns=”http://biomoby.org”>
<moby:mobyContent>

  <ProvisionInformation>
        <serviceSoftware software_name="" software_version="" software_comment=""/>
        <serviceDatabase database_name="" database_version="" database_comment=""/>
        <serviceComment>comment here</serviceComment>  
  </ProvisionInformation>
<moby:mobyData queryID=”Q1”>
        <moby:Simple>
              <moby:Object namespace=”X” id=”1”/>
        </moby:Simple>
</moby:mobyData>
<moby:mobyData queryID=”Q2”>
        <moby:Simple>
              <moby:Object namespace=”X” id=”2”/>
        </moby:Simple>
</moby:mobyData>

</moby:mobyContent>
 </moby:MOBY>



Figure 4



Figure Legends

Figure 1:  Sequential construction of complex objects in the BioMoby Objects Ontology, 
and the corresponding XML serialization of their instances.  (A) The creation of 
BioMoby Object Classes starting from the root object “Object” (a), to a VirtualSequence 
(b) which inherits from Object and has-a Integer (Length), to a GenericSequence (c) 
which inherits from VirtualSequence, and adds a String (SequenceString) through the 
has-a relationship, and finally a DNASequence (d) which simply inherits from and thus 
further specializes the GenericSequence Object semantically.  (B) The serialization of the 
objects (a,b,c,d) from above.  The outermost XML tag is the ontological class name. 
Child tags are added by the has or has-a relationships (b), or are inherited from parent 
classes (c).  Specialization of an existing class (d) simply changes the outermost tag 
name.

Figure 2:  Support for legacy flat-file formats and binaries in BioMoby Objects.  (A) The 
text-plain Object class (a) is the root of all Object classes that support both legacy flat-file 
formats and binary data-types.    From this, the text-formatted and base64-encoded 
classes are derived (b).  text-formatted is the root of all flat-file formats, while all binaries 
are inherited as children of the base64-encoded class (c).  (B) The XML serialization of 
the EMBL class (a) representing EMBL flat-file records, and a GIF image in the form of 
a b64_encoded_GIF object (c).

Figure 3:  The structure of a BioMoby service invocation and response message.  The 
XML structure here is contained within the SOAP Body of the surrounding SOAP 
message.  The tags, from outermost to innermost, are MOBY, mobyContent, and 
mobyData. An example of service provision information is also shown inside of the 
mobyContent block of XML.

Figure 4:  A demonstration of the problems associated with the BioMoby asserted Object 
hierarchy and lack of articleName semantics.  The two (hypothetical) objects 
Molecular_Weight and Hydrophobicity are defined as containing a float representing the 
molecular weight and a string representing a hydrophobicity profile respectively (1) and 
two subclasses are also defined as inheriting from Molecular_Weight and having 
Hydrophobicity, or inheriting from Hydrophobicity and having Molecular_Weight.  An 
instance of Hydrophobicity and of Molecular_Weight, in the same namespace and with 
the same id, has been returned from two independent service calls (2a, 2b).  Though 
cognitively it seems plausible that these two objects could be combined into one of the 
two subclasses (e.g. 2c or 2d) in practice this cannot be done reliably in an automated 
manner because there is no way to automatically interpret the intent of the articleName 
“wt” or the articleName “hydro”.  Moreover, because the intent of the container 
relationships are opaque to the system, it is not possible to infer that 2c and 2d are, in 
fact, identical in their information content and should be able to be utilized by any service 
that consumes both Molecular Weight and Hydrophobicity; rather a service would have 
to register itself as consuming one Object class or the other.  In practice, these kinds of 
problems are resolved by service providers reaching a consensus with one another, and 



choosing to consume or produce only one of the two options, and removing the other 
option from the ontology.



Tables

Table 1:  Comparison of the features of the BioMoby Object Ontology versus that of an OWL 
ontology and their respective instances.  A comparison with XML Schema is also included to show 
the gains achieved by moving towards ontologically-based data structures.

Feature OWL/RDF BioMoby
Objects

W3C XML 
Schema

Declared Classes Yes Yes Sort of
Classes have class properties Yes Yes Sort of
Classes have literal properties Yes Yes Sort of
Extensible Class definitions Yes Yes Sort of
Heritable Class definitions Yes Yes No
Reasoning over instances based on 
asserted ontological subclasses

Yes Yes No

Reasoning over instances based on 
instance properties

Yes No No

Instances must carry properties (vs. 
being inferred to carry properties)

No Yes Sort of


